Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys
نویسندگان
چکیده
منابع مشابه
Precipitation hardening in dilute Al–Zr alloys
The aim of this study was to investigate the effect of solute content (hipoperitectic Al–0.22 wt.%Zr and hiperperitectic Al–0.32 wt.%Zr) on the precipitation hardening and microstructural evolution of dilute Al–Zr alloys isothermally aged. The materials were conventionally cast in a muffle furnace, solidified in a water-cooled Cu mold and subsequently heat-treated at the temperature of 650 K (3...
متن کاملMicrostructure and Precipitation in Al - Li - Cu - Mg - ( Mn , Zr ) alloys
Hot rolled Al-6Li-1Cu-1Mg-0.2Mn (at.%) (Al-1.6Li-2.2Cu-0.9Mg-0.4Mn, wt.%) and Al-6Li-1Cu-1Mg-0.03Zr (at.%) (Al-1.6Li-2.3Cu-1Mg-0.1Zr, wt.%) alloys developed for age forming were studied by tensile testing, electron backscatter diffraction (EBSD), three-dimensional atom probe (3DAP), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). For both alloys, DSC analysis...
متن کاملPrecipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 C
The transformation of Al3Zr (L12) and Al3(Zr1 xTix) (L12) precipitates to their respective equilibrium D023 structures is investigated in conventionally solidified Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys aged isothermally at 500 C or aged isochronally in the range 300– 600 C. Titanium additions delay neither coarsening of the metastable L12 precipitates nor their transformation to the D023 st...
متن کاملNucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys
Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 C or 425 C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipita...
متن کاملMicrostructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.
In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Science and Technology
سال: 2005
ISSN: 0267-0836,1743-2847
DOI: 10.1179/174328405x27034